PARTIEL DE RATTRAPAGE - STRUCTURE I

Année 2016-2017 - Marc Leyral - Sylvain Ebodé

Nom: Prénom: N°de carte étudiant :

PREMIERE PARTIE (5 pts): QUESTIONNAIRE A CHOIX MULTIPLES (QCM)

Question 1 - Que valent la composante verticale V et horizontale H de la laisse ?

D	₁ 100 N							
250		0°	30°	45°	60°	90°		
محوص	sin	0	1/2	<u>1</u> √2	<u>1</u> √3	1		
Cycle .	cos	1	<u>1</u> √3	<u>1</u> √2	1/2	0		
	tan	0	$\frac{1}{3}\sqrt{3}$	1	√3	→∞		
Angle de la laisse avec l'horizon-	cot	→∞	√3	1	<u>1</u> √3	0		

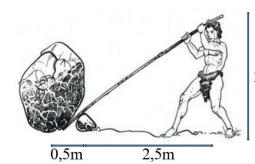
1 - V = 86,6 N et H = 50 N 2 - V = 70,7 N et H = 50 N3 - V = 70,7 N et H = 70,7 N4 - V = 86,6 N et H = 86,6 N 5 - V = 70,7 N et H = 86,6 N 6 - V = 50 N et H = 50 N

tale: 45°

Question 2 - Quelle est charge linéique reprend chaque poutre de la géonef?

- 1 250 kg/ml 2 -12 000 kg/ml
- 3 750 kg/ml
- 4 10 kN/ml
- 5 quasiment 2000 kg/ml
- 6 7,5 kN/ml

Question 3 - Quel est cet élément en X zoomé sur la photo de droite ?


- 1 Un élément de bardage
- 2 Un élément de contreventement
- 3 Une jambe de force
- 4 Une croix de Saint André
- 5 Une croix de Saint Georges
- 6 Sûrement des câbles électriques

Question 4 - puisqu'on parle de ce bâtiment, qui en a été l'ingénieur ?

- 1 Peter Rice
- 2 Georges Pompidou
- 3 Renzo Piano & Richard Rogers
- 4 Isaac Newton
- 5 Cecil Balmond
- 6 Simon Stevin

Question 5 - Le rocher pèse 500 kg. Quel masse doit faire Rahan s'il veut le soulever en se suspendant à son levier ?

1 - 125 kg 2 - 80 kg

3 - 250 kg 4 - 100 kg

5 - 75 kg

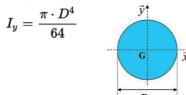
2m6 - 20 kg

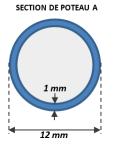
Bonus (+0,5 pt): qui aurait dit « Πα βω και χαριστιωνι ταν γαν κινησω πασαν »?

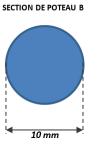
(Cela signifie « Donnez-moi un point d'appui, et un levier, je soulèverai le monde »)

DEUXIEME PARTIE (7pts): QUESTIONS DE COURS.

Question 1 (1 Pt) - Qu'est-ce qu'un schéma statique et que y représente-t-on ? Donnez un exemple.


Question 2 (1 Pt) - Quelle équation permet de s'assurer du non basculement d'une structure ?


Question 3 (1 Pt) - Citez toutes les méthodes de contreventement que vous connaissez.


Question 4 (1 Pt) - Comment calcule-t-on le degré de staticité d'une structure ? Que donne le résultat de ce calcul ?

Question 5 (3 Pts) - A tous autres facteurs égaux par ailleurs, quelle section de poteau est la plus à même de résister au flambement ? Justifiez par le calcul. Astuce : les moments quadratiques (inerties) s'additionnent et... se soustraient !

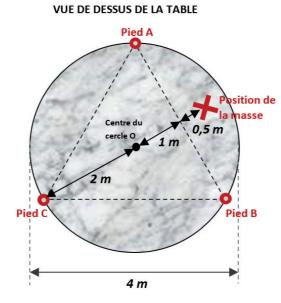
Donnée: Moment quadratique (inertie) d'une section en disque de diamètre D :

PARTIEL DE RATTRAPAGE - STRUCTURE I

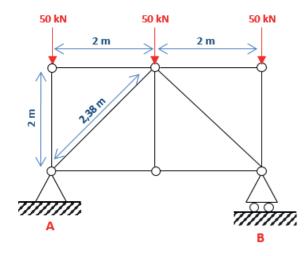
Année 2016-2017 - Marc Leyral - Sylvain Ebodé

TROIXIEME PARTIE: TROIS PETITS PROBLEMES (10 Pt)

PROBLEME 1 (4 Pt): LA TABLE RONDE


Les architectes sont souvent amenée à concevoir du mobilier. Petit entraînement.

QUESTIONS:


- 1 Autour de quel axe la table va-t-elle se renverser (la masse se situe sur la croix rouge) ? Quelle est la distance de cet axe au centre de gravité de la table ? (1 Pt)
- 2 Quel est le moment stabilisant de la table par rapport à cet axe de renversement ? (2 Pt)
- **3** En déduire la masse qui, si elle est posée sur la croix rouge, fera basculer la table ? (1 Pt)

DONNEES:

La table est composée d'un disque en bois de 4 cm d'épaisseur (masse volumique ρ_b = 500 kg/m³) entièrement recouvert d'une plaque d'acier de 2 mm d'épaisseur (masse volumique ρ_s = 7 850 kg/m³).

PROBLEME 2 (4 Pt): POUTRE TREILLIS DE TYPE HOWE

QUESTIONS:

- 1 Calculez les réactions aux appuis (1 Pt)
- 2 Calculez par la méthode de votre choix les efforts dans toutes les barres de la poutre ci-contre, en précisant bien s'il s'agit de traction ou de compression (2 Pt)
- **3 -** Choisissez la section qui convient pour les diagonales. (1 Pt)

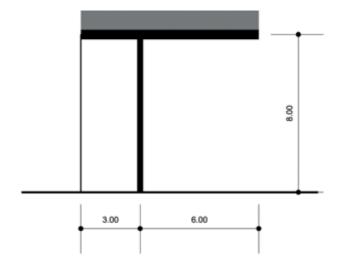
DONNEES:

Acier S235:

Limite d'élatiscité : σ_s = 235 MPa Module d'Young : E = 210 000 MPa 1 MPa = 1 MN/ 1 m² = 1 N/ 1 mm²

Equations

Force critique d'Euler : $F = \pi^2 E I/I_f^2$


Contrainte : $\sigma = F/S$

DIAMÈTRE EXTÉRIEUR	ÉPAISSEUR	MASSE LINÉIQUE	AIRE DE SECTION TRANSVERSALE	MOMENT D'INERTIE DE FLEXION	RAYON DE GIRATION
mm	mm	kg/m	cm2	cm4	cm
21,3	2	0,95	1,21	0,57	0,686
7	2,3	1,08	1,37	0,629	0,677
25	2	1,13	1,45	0,963	0,816
26,9	2	1,23	1,56	1,22	0,883
	2,3	1,40	1,78	1,36	0,874
30	2	1,38	1,76	1,73	0,992
33,7	2	1,56	1,99	2,511	1,123
	2,6	1,99	2,54	3,09	1,10
	2,9	2,20	2,81	3,36	1,09
	3	2,27	2,89	3,44	1,09
42,4	2	1,99	2,54	5,189	1,43
	2,6	2,55	3,25	6,46	1,41
	2,9	2,82	3,60	7,06	1,40
	3,2	3,09	3,94	7,62	1,39
45	2	2,12	2,70	6,26	1,52
48,3	2	2,28	2,91	7,806	1,638
	2,5	2,82	3,60	9,455	1,622
	2,9	3,25	4,14	10,70	1,61
	3,2	3,56	4,53	11,60	1,60
50	2	2,37	3,02	8,70	1,70
60,3	2	2,87	3,66	15,573	2,062
	2,5	3,56	4,54	18,983	2,045
	2,9	4,11	5,23	21,60	2,03
	3,2	4,51	5,74	23,50	2,02
70	2,9	4,80	6,11	34,50	2,37
76,1	2	3,65	4,65	31,962	2,621

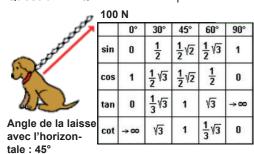
PROBLEME 3 (2 Pt) : La buvette de Jean Prouvé

I IESTION .

1 - Réalisez la descente de charge à l'ELU de la structure (trouvez les efforts en pied de poteau et à l'attache du câble au sol) (2 Pts)

DONNEES:

Entraxe des auvents : 4m Poids de la toiture : 250 kg/m² Charge d'entretien : 100 kg/m²


PARTIEL DE RATTRAPAGE - STRUCTURE I / CORRIGE

Année 2016-2017 - Marc Leyral - Sylvain Ebodé

Nom: Prénom: N°de carte étudiant :

PREMIERE PARTIE (5 pts): QUESTIONNAIRE A CHOIX MULTIPLES (QCM)

Question 1 - Que valent la composante verticale V et horizontale H de la laisse ?

1 - V = 86,6 N et H = 50 N2 - V = 70,7 N et H = 50 N3 - V = 70,7 N et H = 70,7 N 4 - V = 86,6 N et H = 86,6 N 5 - V = 70.7 N et H = 86.6 N6 - V = 50 N et H = 50 N

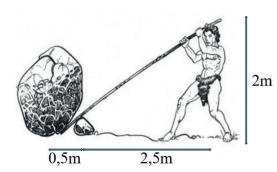
Question 2 - Quelle est charge linéique reprend chaque poutre de la géonef?

1 - 250 kg/ml 2 -12 000 kg/ml 3 - 750 kg/ml 4 - 10 kN/ml 5 - quasiment 2000 kg/ml 6 - 7,5 kN/ml

250 kg/m² * (6 mètres / 2 - car il y a deux poutres) = 750 kg/ml

Question 3 - Quel est cet élément en X zoomé sur la photo de droite ?

- 1 Un élément de bardage
- 2 Un élément de contreventement
- 3 Une jambe de force
- 4 Une croix de Saint André
- 5 Une croix de Saint Georges
- 6 Sûrement des câbles électriques


Question 4 - puisqu'on parle de ce bâtiment, qui en a été l'ingénieur ?

- 1 Peter Rice
- 2 Georges Pompidou
- 3 Renzo Piano & Richard Rogers
- 4 Isaac Newton
- 5 Cecil Balmond
- 6 Simon Stevin

Il s'agit du centre culturel Georges Pompidou, dit Beaubourg

Question 5 - Le rocher pèse 500 kg. Quel masse doit faire Rahan s'il veut le soulever en se suspendant à son levier ?

2 - 80 kg 3 - 250 kg 4 - 100 kg 5 - 75 kg 6 - 20 kg

1 - 125 kg

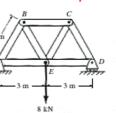
Bonus (+0,5 pt) : qui aurait dit « Πα βω και χαριστιωνι ταν γαν κινησω πασαν » ?

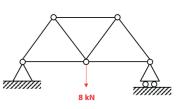
(Cela signifie « Donnez-moi un point d'appui, et un levier, je soulèverai le monde »)

DEUXIEME PARTIE (7pts): QUESTIONS DE COURS.

NATIONALE SUPERIEURE D'ARCHITECTURE DE PARIS LA VILLETTE

ECOLE


Question 1 (1 Pt) - Qu'est-ce qu'un schéma statique et que y représente-t-on ? Donnez un exemple.


Il s'agit d'un schéma simplifié ne montrant de la structure que ce est qui juste nécessaire à sa résolution.

On trace sur un schéma statique uniquement les points suivants :

- Les éléments structurels dessinés sous forme de barres (un trait)
- Les liaisons et les appuis
- Les forces en jeu et les distances

Exemple : Pont treillis de type Warren

Question 2 (1 Pt) - Quelle équation permet de s'assurer du non basculement d'une structure ?

Le basculement des structures étant dû aux moments, l'équation qui permet de s'assurer de la stabilité en rotation est l'équation du moment statique issue du Principe Fondamental de la Statique (PFS) : la somme des moments en tout point de la structure doit être

$$\sum M_A(F)=0$$

Question 3 (1Pt) - Citez toutes les méthodes de contreventement que vous connaissez.

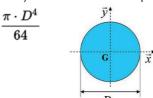
par étais

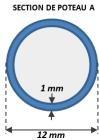
Croix de Saint-André (Beaubourg, Paris)

Contreventement par iambes de forces

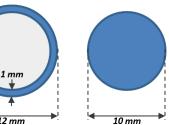
Contreventement par encastrement (Téléphérique de Rochebrune)

(Tour Jussieu)


Question 4 (1 Pt) - Comment calcule-t-on le degré de staticité d'une structure ? Que donne le résultat de ce calcul ? Le degré de staticité h vaut h = i - n


i est le nombre d'inconnues statiques au niveau des nœuds

n est le nombre d'équations disponibles pour les éléments de la structure : Chaque élément de la structure permet de connaître 3 équations.


Question 5 (3 Pts) - A tous autres facteurs égaux par ailleurs, quelle section de poteau est la plus à même de résister au flambement ? Justifiez par le calcul. Astuce : les moments quadratiques (inerties) s'additionnent et... se soustraient !

Donnée: Moment quadratique (inertie) d'une section en disque de diamètre D :

Pour obtenir l'inertie du tube, il s'agit de soustraire l'inertie du vide à l'inertie du plein :

Inertie du poteau
$$A: \frac{\pi * 12^4}{64} - \frac{\pi * 10^4}{64} = 527 \text{ mm}^4$$

Inertie du poteau B:
$$\frac{\pi * 10^4}{64} = 491 \, mm^4$$

Plus la section a une inertie élevée, plus elle résiste au flambement, je choisis donc la section A.

PARTIEL DE RATTRAPAGE - STRUCTURE I / CORRIGE

Année 2016-2017 - Marc Leyral - Sylvain Ebodé

VUE DE DESSUS DE LA TABLE

TROIXIEME PARTIE: TROIS PETITS PROBLEMES (10 Pt)

PROBLEME 1 (4 Pt): LA TABLE RONDE

Les architectes sont souvent amenée à concevoir du mobilier. Petit entraînement.

QUESTIONS:

- 1 Autour de quel axe la table va-t-elle se renverser (la masse se situe sur la croix rouge)? Quelle est la distance de cet axe au centre de gravité de la table? (1 Pt) 2 - Quel est le moment stabilisant de la table par rapport à cet axe de renversement ?
- 3 En déduire la masse qui, si elle est posée sur la croix rouge, fera basculer la table? (1 Pt)

DONNEES:

La table est composée d'un disque en bois de 4 cm d'épaisseur (masse volumique ρ_s = 500 kg/m³) entièrement recouvert d'une plaque d'acier de 2 mm d'épaisseur (masse volumique $\rho_s = 7.850 \text{ kg/m}^3$).

Pied A 4 m

REPONSES:

1 - Autour de quel axe la table va-t-elle se renverser (la masse se situe sur la croix rouge) ? Quelle est la distance de cet axe au centre de gravité de la table ? (1 Pt)

La table basculera autour de l'axe reliant les pieds A et B. La table étant homogène, le centre de gravité est confondu avec le centre du cercle (O). La distance du centre de gravité à l'axe de basculement, vaut donc 1m. Il s'agit ainsi du bras de levier du moment stabilisant.

DIAMÈTRE

ÉPAISSEUR

MASSE

AIRE DE

2 - Quel est le moment stabilisant de la table par rapport à cet axe de renversement ? (2 Pt)

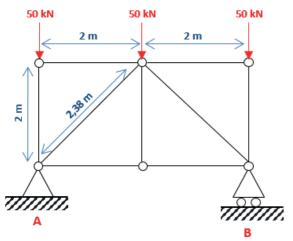
Surface de la table : $S = \pi r^2 = \pi \times 2^2 = 12.6 \text{ m}^2$

Masse du plateau de bois : S x e, x ρ_b = 12,6 m² x 0,04 m x 500 kg/m³ = 252 kg

Masse de la finition acier : S x e x ρ_s = 12,6 m² x 0,002 m x 7 850 kg/m³ = 198 kg

Masse totale de la table : M = 252 kg + 198 kg = 450 kg - cette résultante s'exerce au centre de gravité O

Moment stabilisant par rapport à l'axe AB : Ms = M x 1 m = 450 kg.m


3 - En déduire la masse qui, si elle est posée sur la croix rouge, fera basculer la table ? (1 Pt)

Soit m, la masse qui provoque le basculement.

Moment renversant de la table : Mr = $m \times 0.5$ m (= Ms au moment du basculement)

m = Ms/0.5 = 900 kg.

PROBLEME 2 (4 Pt): POUTRE TREILLIS DE TYPE HOWE

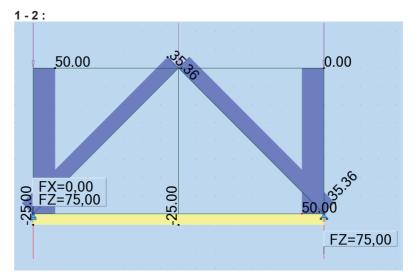
QUESTIONS:

- 1 Calculez les réactions aux appuis (1 Pt)
- 2 Calculez par la méthode de votre choix les efforts dans toutes les barres de la poutre ci-contre, en précisant bien s'il s'agit de traction ou de compression (2 Pt)
- 3 Choisissez la section qui convient pour les diagonales. (1 Pt)

DONNEES:

Acier S235:

Limite d'élatiscité : σ = 235 MPa Module d'Young : E = 210 000 MPa $1 \text{ MPa} = 1 \text{ MN}/ 1 \text{ m}^2 = 1 \text{ N}/ 1 \text{ mm}^2$


Force critique d'Euler : $F = \pi^2 E I/I_c^2$ Contrainte : $\sigma = F/S$

GIRATION RANSVERSALE DE FLEXION cm2 cm4 21.3 2 0,95 1,21 0.57 0.686 2,3 1.08 1.37 0.629 0.677 25 1,13 1,45 0,963 0,816 26.9 1.23 1.56 1,22 0.883 1,40 1,78 1 36 0,874 2.3 30 1,76 2 1,38 1,73 0,992 33,7 2 1,56 1,99 2,511 1,123 2.6 1.99 2.54 3.09 1.10 2,9 2,20 2,81 3,36 1,09 2,27 2,89 3,44 1,09 42.4 2 1.99 2.54 5.189 1.43 2,55 3.25 6.46 1.41 2,6 2,9 2,82 3,60 7,06 1,40 32 7.62 3.09 3.94 1 39 2,12 2,70 6,26 1,52 45 48,3 2.28 2.91 7.806 1.638 2,5 2,82 3,60 9,455 1,622 3.25 10.70 2.9 4.14 1.61 3,2 3,56 4,53 11,60 1,60 50 2 2,37 3,02 8,70 1,70 2,87 2.062 60,3 2 3,66 15,573 18,983 2,045 3,56 4,54 2,5 2,9 4,11 5,23 21,60 2,03 3,2 4.51 5 74 23.50 2.02 4.80 34.50 6.11 2.37 70 2.9 76,1 3,65 4,65 31,962 2,621

MOMENT

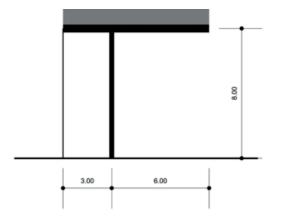
RAYON DE

REPONSES:

3 - Choisissez la section qui convient poutre la diagonale 2. (1 Pt) Les diagonale reprennent un effort de compression F = 35,36 kN

Dimensionnement à la compression simple :

 $\sigma = F/S \le 235 \text{ MPa}$ donc $S = F/235 = 35 \ 360 \ / \ 235 = 151 \ \text{mm}^2 = 1,51 \ \text{cm}^2$


Dimensionnement au flambement

Force critique d'Euler : $F = \pi^2 E I/I_c^2$ donc $I = FI_c^2/\pi^2 E = 35\ 360 * (1*2\ 820)^2 / \pi^2 * 210000 = 135\ 810 \text{ mm}^4 = 13, 6 \text{ cm}^4$

La section la plus économique est le tube de diamètre 60,3mm d'épaisseur 2mm.

PROBLEME 3 (2 Pt) : La buvette de Jean Prouvé

QUESTIONS:

1 - Réalisez la descente de charge à l'ELU de la structure (trouvez les efforts en pied de poteau et à l'attache du câble au sol) (2 Pts)

DONNEES:

Entraxe des auvents : 4m Poids de la toiture : 250 kg/m² Charge d'entretien : 100 kg/m²

REPONSES:

Charge surfacique ELU de la toiture : 1,35 x 200 + 1,5 x 100 = 420 kg/m²

Charge linéique sur la poutre : 420 kg/m² x 4m = 1 680 kg/ml

Résultante : 1 680 kg/ml x (3 + 6) = 15 120 kg à (3m + 6m) / 2 = 4,5 m des extrémité de la poutre

PFS sur les forces en Y: $R_{cable} + R_{poteau} = 15 120 \text{ kg}$

PFS sur les moment au niveau du câble :

-15 120 x 4,5 + R_{poteau} x 3 = 0 R_{poteau} = 15 120 x 4,5 / 3 = 22 680 kg

 R_{cable} = 15 120 - 22 680 = - 7 560 kg